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ABSTRACT

Early information for sustainable utilization of water resources through pois-
son probability distribution of rainfall is an important regulatory measure for
flood control and water security management. As a follow-up to our previous
studies on distributions, this paper reports statistical goodness-of-fit evalua-
tions of selected rainfall data. It is the utilization of the maximum likelihood
method (MLM) for the poisson probability distribution (PPD) of selected
rainfall data. The numerically estimated constant of the density of PPD was
estimated by the MLM, and Microsoft Excel Solver (MES). These estimated
constants were used to compute probabilities of poisson distributions. The
computed probabilities using the constants obtained were evaluated statis-
tically (analysis of variance, (ANOVA), relative error, model of’ selection
criterion (MSC), Coefficient of Determination (CD) and Correlation coeffi-
cient (R). The study established that the poisson probability distribution’s
parameter (p) was the average of the logarithm to base 10 of rainfall using the
MLM and MES estimators. The constants were found to be 0.665 and 0.535
for Makurdi, 0.695 and 0.478 for Abeokuta using MLM and MES, respectively.
The relative errors were found to be 0.479 and 0.743, and 1.141 and 1.509 for
Makurdi and Abeokuta using MLM and MES, respectively. The correlation
coefficient for Makurdi and Abeokuta using MLM and MES were found to
be 0.876 and 0.800, and 0.269 and 0.341, respectively. It was concluded that
the MLM constant was better than MES based on the values of MSC, CD,
relative error and R. MLM predicted Weibull probability of rainfall intensity
better than MES. Utilization of PPD in the estimation of rainfall intensity
will help in the prediction of rainfall for agriculture in attaining Sustainable
Development Goal 2 (zero hunger), regulatory measures for flood control
and water security management. There is a need to evaluate MLM and other
probability distributions.

Keywords: Poisson distribution, rainfall intensity, the goodness of fit test,
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1 Introduction
The risk of floods has become a grave concern world-
wide. Floods have affected a supreme number of
people and have the extreme damage possible of all-
natural disasters worldwide (Al-Zahrani, 2018). With
more life-threatening weather patterns forecast in the

future, and with an increase in population progress
and urban areas development, more recurrent floods
are predicted to occur. These floods and climate
changes will meaningfully affect the hydrological
comportment and response of many areas to storm
events of the higher magnitude of runoff and higher
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return of small floods (Al-Zahrani, 2018). Fig. 1 con-
firms the effect of floods on the environment as sur-
face water pollution carriers. Fig. 2 presents the
influence of climate change on the theoretical design
compromise for typical semi-urban and urban infras-
tructures.

The speedy urban growth in many geopolitical
zones of Nigeria has converted the surface appear-
ances of undisturbed soils into semi-permeable or im-
permeable layers of asphalts and concretes. Present
land use renovations have significantly enhanced
the potential of these cities to create relatively large
amounts of surface runoff from rainfall intensity
events, causing extraordinary urban and semi-urban
floodings which endanger achievement of sustainable
goal 2 (zero hunger), goal 15 (life on land) and goal
14 (life below water). With reference to the expected
risks associated with rainfall, and floods, much re-
search has been conducted to simulate and analyse
rainfall intensity duration in different parts and re-
gions of the world.

However, cities (such as Abeokuta and Makurdi)
in Nigeria had undergone speedy urban development
that meaningfully affected their land covers. These
cities are also located in geopolitical zones with ex-
treme climate conditions. These rapid urbanizations
and the extreme rainfall intensities characteristics of
these cities are expected to meaningfully affect the
runoff progression and the amount of storm and rain-
fall runoff during these floods. It is clearly expected
that these changes in urbanization and land covers
will be altered and alter the hydrologic response of the
watershed. Therefore, there is a need for further stud-
ies on flooding potential through probability distri-
butions of rainfall intensities duration and maximum
likelihood estimation under the circumstances, a nu-
meral of empirical relationships have been utilized
for the probability of rainfall intensity in hydrology,
water resources areas, civil and environmental engi-
neering. Numerous probability distributions are ex-
tensively in use over the past three decades for mod-
elling rainfall intensity data in areas of research such
as environment, reliability, economics, engineering,
biological studies, demography and medical sciences
(Dikko and Faisal, 2018). Two characteristic proba-
bility distribution expressions and functions used for
rainfall intensity duration data analysis are the expo-
nential and the Weibull probability density functions
(Pieracci, 1997). These probability distributions are
alienated into two portions as follows (Fiondella and
Zeephongsekul, 2015; Gao et al., 2020; Jones et al.,
2020):

(a) Discrete Probability Distributions (Binomial
Distribution, Bernoulli Distribution and Pois-
son Distribution)

(b) Continuous Probability Distributions (Normal
Distribution, Continuous Uniform Distribution,

Log-Normal Distribution and Exponential Dis-
tribution)

There are ten estimation methods to estimate
the reliability of the distribution. These methods
are: MLM, Least square and weighted least square
estimation, Percentile estimation, Maximum prod-
uct of estimation, Minimum spacing distance esti-
mation, Crame´r-Von Mises estimation, Anderson-
Darling and Right-tail Anderson-Darling estimation
(Almarashi et al., 2020). Literature provides informa-
tion on probability distributions (Weibull, Normal,
and log-normal), but there is little or no information
on Maximum likelihood estimation and Poisson prob-
ability distribution (PPD). With this advancement
in computer applications and technologies, which
makes it possible to collect rainfall intensity-duration
data at various stations there is a need to utilize the
maximum likelihood method (MLM) and PPD for
rainfall intensity-duration data analysis. This study,
therefore focuses on the utilization and evaluation
of maximum likelihood estimation and PPD for rain-
fall intensity-duration data analysis, which will help
in attaining sustainable development goals 2 (zero
hunger), goal 15 (life on land) and goal 14 (life below
water), help in regulatory measure for flood control
and water security management.

2 Materials and Methods

2.1 Data collection and analysis

Rainfall intensity-duration data of two stations
(Abeokuta (1986 to 2010) and Makurdi (1979 to 2009))
were collected from David et al. (2019) and Isik-
wue et al. (2012). The data were analysed statisti-
cally using analysis of variance (ANOVA). The prob-
ability of the rainfall intensity was computed using
Weibull probability mathematical expression as fol-
lows (Teyabeen et al., 2017; Almarashi et al., 2020)
and Equations 1 and Equation 2):

Tm(x) =
n + 1

m
(1)

where Tm is the return period, n is the sample size
and m is the rank.

f (x) = pm(x) =
1

Tm
(2)

where pm(x) is the theoretical probability (probability
index) and f (x) is the cumulative probability.

The Weibull distribution is the most preferred in
modelling the rainfall intensity data. The parame-
ter of the PPD was calculated using the MLM and
Microsoft Excel Solver (MES). The calculated PPD’s
parameter (MLM and MES methods) was used to
establish the PPD were evaluated statistically using
analysis of variance ANOVA), Relative error, Model
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(a) (b)

(c) (d)

Figure 1. (a) Run off with recalcitrant materials as floating solids on Opa river in Ile -Ife, Nigeria, (b)
Combination of Run off with recalcitrant materials as floating solids on Opa river in Ile -Ife, Nigeria,
(c) Effects of floods in a Flooded Communities of Markurdi, Nigeria, and (d) Significant effects of
floods in a community in Ile -Ife, Nigeria

Figure 2. Impact of climate change on the theoretical design compromise for typical urban infrastructure
(Source: Martel et al. (2021)



Asani et al. Fundam Appl Agric 7(4): 285–297, 2022 288

of selection criterion (MSC), Coefficient of Determi-
nation (CD) and Correlation coefficient (R). MSC in-
dicates higher exactness, cogency and a good fit of
the methods. MSC was calculated using Equation 3
as follows (Adekunbi et al., 2020):

MSC = ln


n
∑

i=1
(Yobsi −Yobs)

2

n
∑

i=1
(Yobsi −Ycali)2

− 2p
n

(3)

where Yobsi is the probability value using Weibull
probability mathematical expression; is the average
probability value using Weibull probability mathe-
matical expression; p is the total number of fixed pa-
rameters to be estimated in the methods; n is the total
number of rainfall intensities calculated, and Ycali is
the probability calculated using the MLM estimator.

The coefficient of determination (CD) can be un-
derstood as the quantity of expected data variation
that can be described by the obtained data. Higher
values of CD indicate higher accurateness, cogency
and good fitness of the device. CD, correlation coef-
ficient and relative error can be expressed as follows
(Equations 4, 5, and 6):

CD =

n
∑

i=1
(Yobsi −Ycali)

2 −
n
∑

i=1
(Yobsi −Ycali)

2

n
∑

i=1
(Yobsi −Ycali)2

(4)

where Ycali is the average probability value calculated
using the MLM estimator.

R =

√√√√√√√
n
∑

i=1
(Yobsi −Ycali)2 −

n
∑

i=1
(Yobsi −Ycali)2

n
∑

i=1
(Yobsi −Ycali)2

(5)

Rei(%) =

(
1
N

) N

∑
i=1

(
Yobsi −Ycali

Yobsi

)
(6)

Fig. 3 presents the summary of the Microsoft Excel
Solver procedures. MES was used for the determina-
tion of these empirically derived parameters based on
availability at no additional cost. The procedure used
for the Microsoft Excel solver can be summarized as
follows: (i) Excel solver was added in Microsoft Excel,
(ii) Target of the numerical analysis((

Kp − Kt
)2

= 0
)

operation and changing cells were set, where Kp is
the probability value using Weibull mathematical ex-
pression

( f (x)) = pm(x) =
1

Tm

and Kt is the PPD probability calculated using MLM

f ( f ) =
λx

x!
exp−λ ;

and (iii) Microsoft Excel Solver was allowed to iterate
at 200 iterations with 0.005 tolerance.

3 Results and Discussion

3.1 Rainfall intensities data

Fig. 4 and Fig. 5 present the rainfall intensity data
from David et al. (2019), while Fig. 6 confirms the
rainfall intensity data from Isikwue et al. (2012). From
these figures, the highest rainfall-duration-intensity
frequency occurred when the duration was 5 min in
the year 1 (1979, Isikwue et al. (2012) and 1986, David
et al. (2019), respectively) and the lowest rainfall-
duration intensity frequency occurred when the du-
ration was 1440 min in the 30th year (2009, Isikwue
et al. (2012) and 2010, David et al. (2019)). Table 1 con-
firms the result of an ANOVA of the rainfall-duration
intensity frequency (Abeokuta) with respect to the
years.

From Table 1, the F24,300 = 1.652 and p = 3.02 ×
10−2 for analysis of the rainfall-duration intensity fre-
quency between the years. This result established that
there were significant differences between rainfall-
duration-intensity frequency values within the years
at a 95% confidence level (p < 0.05). Table 2presents
the outputs from an ANOVA of rainfall-duration-
intensity frequency within the duration of the rainfall.
The Table confirms that the F12,312 = 84.32 and p = 2.47
× 10−90 for analysis of the rainfall-duration-intensity
frequency between the duration of the rainfall. This
result established that there was a significant differ-
ence between rainfall-duration-intensity frequency
values within these durations at a 95% confidence
level (p < 0.05). Table 3 confirms the result of an
ANOVA of the rainfall-duration intensity frequency
(Makurdi) with respect to the return period. From
Table 3, the FF5,204 = 120.59 and p = 6.21 × 10−59 for
analysis of the rainfall-duration intensity frequency
between the return years. This result established that
there were significant differences between rainfall-
duration-intensity frequency values within the years
at a 95% confidence level (p < 0.05). Table 4 confirms
the outputs from an ANOVA of rainfall-duration-
intensity frequency within the duration of the rainfall.
Table 4 confirms that the FF34,175 = 0.926 and p = 5.90
× 10−1 for analysis of the rainfall-duration-intensity
frequency between the duration of the rainfall. This
result established that there was no significant differ-
ence between rainfall-duration-intensity frequency
values within these durations at a 95% confidence
level (p > 0.05).

Application of pendimethalin at label rate was
tolerable to all the tested wheat varieties.
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Figure 3. Summary of the Microsoft Excel Solver Procedures

Table 5 presents the statistical properties (aver-
age, maximum, minimum, standard deviation and
Skewness) of the rainfall intensity data in respect of
Abeokuta. Table 6 confirms the statistical summary
(average, maximum, minimum, and standard devia-
tion) of the rainfall intensity data for Makurdi. From
Table 5, the averages of rainfall intensity for Abeokuta
were found to be 206.40, 164.54, 135.14, 117.83, 85.64,
69.06, 55.33, 41.23, 31.72, 22.81, 19.02, 15.78 and 11.59
mm/h for duration times of 10, 20, 30, 45,5, 60, 90,
120, 15, 180, 240, 300 and 420 minutes, respectively.
These results confirmed that heavy rainfalls had the
lowest duration and the lowest rainfall intensities
had the highest duration. The other statistical prop-
erties (maximum, minimum and standard deviation)
followed the same trend as the averages.

From Table 5, the Skewness of the rainfall intensi-
ties was between 0.16 and 1.32. All these durations
had positive Skewness, which indicated that most of
the values of these rainfall intensities concentrated on
the right of the mean, with extreme values to the left.
Table 6 presents the average, maximum, minimum

and standard deviation of the rainfall intensities for
Makurdi at different return periods. The averages of
the rainfall intensities from Makurdi were found to
be 180.541, 69.320, 36.819, 22.815, and 12.119 mm/h
for the return period of 100, 50, 25, 10, 5 and 2 years,
respectively. These trends of rainfall intensities for
Tables 5 and 6 agreed with literature (Abouammoh,
1991; Gupta and Huang, 2014; Hassan et al., 2017; Li-
hou and Spence, 1988; Madsen et al., 2017; Mahmoudi
and Sepahdar, 2013; Tramblay et al., 2013; Wagh and
Kamalja, 2015; Francesco et al., 2014; Morales and
Vicini, 2020; Aleksandrovskaya et al., 2019; Jeong
et al., 2017).

3.2 Derivation of Poisson parameter

The log-likelihood function of this random sample is
given as follows (Couton and Danech-Pajouh, 1997;
Brosius, 2015; Sakai et al., 2018):

L(x1, x2, x3, . . . , xn) =
n

∑
i=1

ln f (x1, θ) (7)
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Figure 4. Rainfall intensity of Abeokuta (duration of
between 5 and 45 min)

Figure 5. Rainfall intensity of Abeokuta (duration of
between 60 and 420 min)

Figure 6. Rainfall intensity of Makurdi (return
period of between 2 and 100 years)

Table 1. Result of an ANOVA of the rainfall-duration intensity frequency (Abeokuta) with respect to the years

SoV SS Df MSS F-Value P-value

Between years 181955 24 7581.458 1.651739 0.030253
Within years 1376996 300 4589.985
Total 1558951 324

SoV: Sources of variation; SS: Df: degrees of freedom; Sum of square; MSS: Mean sum of square

Table 2. Outputs from an ANOVA of rainfall-duration-intensity frequency within the duration of the rainfall

SoV SS Df MSS F-Value P-value

Between RID 1191745 12 99312.08 84.38 2.47 × 10−90

Within RID 367205.6 312 1176.941
Total 1558951 324

SoV: Sources of variation; SS: Df: degrees of freedom; Sum of square; MSS: Mean sum of square
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Table 3. Result of an ANOVA of the rainfall-duration intensity frequency (Makurdi) with respect to the return
period

SoV SS Df MSS F-Value P-value

Between return periods 721710.3 5 144342.1 120.5911 6.21 × 10−59

Within return periods 244178.7 204 1196.954
Total 965889 209

SoV: Sources of variation; SS: Df: degrees of freedom; Sum of square; MSS: Mean sum of square

Table 4. Outputs from an ANOVA of rainfall-duration-intensity frequency within the duration of the rainfall

SoV SS Df MSS F-Value P-value

Between durations 147235.3 34 4330.449 0.925701 0.590208
Within durations 818653.7 175 4678.021
Total 965889 209

SoV: Sources of variation; SS: Df: degrees of freedom; Sum of square; MSS: Mean sum of square

Table 5. Statistical properties (average, maximum, minimum, standard deviation and Skewness) of the rainfall
intensity data in respect of Abeokuta

Duration Average Median Geomean Standard deviation Skewness

5 206.404 175.8 166.509 86.802 1.141
10 164.54 147.25 139.916 57.502 0.628
15 135.144 129.2 118.85 40.658 0.159
20 117.832 122.7 105.85 33.575 0.249
30 85.644 81.8 78.617 27.277 0.64
45 69.012 61.75 65.328 19.665 0.264
60 55.328 58.45 53.413 16.083 0.505
90 41.232 40.8 41.165 10.941 0.527
120 31.72 30.65 32.338 8.682 0.949
180 22.812 21.35 23.912 6.462 1.322
240 19.024 16.7 20.324 5.282 1.196
300 15.784 14.75 17.184 4.121 1.075
420 11.592 11.2 12.99 2.772 0.999

Table 6. Statistical summary (average, maximum, minimum, and standard deviation) of the rainfall intensity
data for Makurdi

Return period Average Median Geomean Standard deviation Skewness

2 12.119 10.635 10.854 4.506 0.928
5 22.815 20.02 20.595 8.484 0.928
10 36.819 32.315 33.435 13.692 0.928
25 69.32 60.83 63.446 25.777 0.928
50 111.87 98.17 103.003 41.599 0.928
100 180.541 158.435 167.224 67.135 0.928
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The MLM is produced as follows (Pichugina, 2008;
Pobočíková et al., 2017):

L(θ) =
n

∏
i=1

f x(x1, θ) (8)

Take the natural log of the likelihood, collect terms
involving θ.

ln(L(θ)) = ln

[
n

∏
i=1

f x(x1, θ)

]
(9)

Find the value of θεθ, θ, for which log L(θ) is maxi-
mized by differentiation.

d
dθ

[ln(L(θ))] =
d
dθ

{
ln

[
n

∏
i=1

f x(x1, θ)

]}
(10)

In the parameter (θ). If θ is vector-valued, say
θ = (θi, . . . , θn), then find θ = (θi, . . . , θn) by simul-
taneously solving the n equations given by other
researchers (Yashunsky, 2019; Wentzel-Larsen and
Anhøj, 2019; Pham and Pham, 2019; Piast, 2019; Pi-
chon, 2018; Roberts, 2019; Santos, 2018; Sulbhewar
and Raveendranath, 2017; Telles, 2020; Hosseinzade-
htalaei et al., 2020).

∂

∂θj
[ln(L(θ))] =

∂

∂θ

{
ln

[
n

∏
i=1

f x(x1, θ)

]}
= 0;

j = 1 . . . k

(11)

Poisson probability distribution can be stated as fol-
lows (Yashunsky, 2019; Wentzel-Larsen and Anhøj,
2019; Pham and Pham, 2019; Piast, 2019; Pichon, 2018;
Roberts, 2019; Santos, 2018; Sulbhewar and Raveen-
dranath, 2017; Telles, 2020; Hosseinzadehtalaei et al.,
2020):

f (x) =
λx

x!
exp−λ (12)

L(x) =
n

∏
i=1

f x(xi, λ) =
λnx

xn!
exp−nλ (13)

ln [L(x)] = ln

[
n

∏
i=1

f x(xi, λ)

]
=

nxln(λ)− nλ−
n

∑
i=1

ln(xi!)

(14)

∂

∂λ

[
nxln(λ)− nλ−

n

∑
i=1

ln(xi!)

]
=

∂

∂λ

[
n

∑
i=1

ln(λ)− nλ−
n

∑
i=1

ln(xi!)

] (15)

∂

∂λ

[
n

∑
i=1

xiln(λ)− nλ−
n

∑
i=1

ln(xi!)

]
=[

1
λ

n

∑
i=1

xi − n

]
= 0

(16)

λ =
1
λ

n

∑
i=1

xi (17)

Equation 17 confirmed that poisson probability
distribution’s parameter (p) is the mean of the natural
logarithm of rainfall intensity. Table 7 present values
of poisson probability distribution’s parameter ob-
tained using MLM and MES, and the performance of
these methods compared with the standard Weibull
method. Tables 8 and 9 provide information on sta-
tistical analysis (ANOVA) of the parameters and sta-
tistical evaluations of the two methods. These Tables
confirmed that the values of the parameter were be-
tween 0.754 and 1.695 for both MES and MLM esti-
mator methods. These values of the parameter were
similar to the values obtained in literature such as
Pisarenko et al. (2002), Vivekanandan (2013), Pichon
(2018) and Chacko and Mohan (2018). Outputs from
the ANOVA for these parameters (Table 8) confirmed
that there was a significant difference between these
parameters obtained using the two estimators and
methods at a 95% confidence level (F1,2 = 564.098 and
p = 0.00177, which is less than 0.05).

Figs. 6 and 7 established that the exponential dis-
tribution is a continuous distribution as the probabil-
ity did not discontinue between certain rainfall inten-
sities for both Abeokuta and Makurdi data. Unlike
the Bernoulli distribution in which the probability of
the rainfall intensity discontinued for the estimator
using the MES method between 104.54 mm/h and
124.82 mm/h. These lower performances of this pa-
rameter by MES are similar to the performance of neg-
ative binomial distribution (Barnett et al., 2006; Rinne,
2008). In addition, the lower performance of the MES
method can be attributed to the weak relationship
between Weibull probability and Exponential distri-
bution (Eggermont et al., 2009; Ward and Ahlquist,
2018; Wentzel-Larsen and Anhøj, 2019).

Table 7 also confirmed that the relative error was
between 0.659 and 1.141, MSC was between −0.028
and 1.339, the values of CD were between 0.118 and
0.682 and R was between 0.344 and 0.826. From
these values of relative errors, MSC, CD and R ,
MLM predicted the Weibull probability better than
the MES, based on lower error and higher MSC,
CD and R. Tables 8 to 11 present the outputs from
ANOVA conducted on the statistical evaluation of
effects of selected factors on exponential distribution.
Table 9 confirmed that locations had no significant
effects on these parameters obtained using the two
methods at a 95% confidence level (F1,2 = 0.0070 and
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Figure 7. Percentile of rainfall intensities (Abeokuta)
intensities (Abeokuta)

Figure 8. Statistical probabilities of rainfall
intensities (Abeokuta)

Figure 9. Percentile of rainfall intensities (Makurdi)
intensities (Abeokuta)

Figure 10. Statistical probabilities of rainfall
intensities (Makurdi)

Table 7. Values of Poisson probability distribution’s parameter and performance of these methods compared
with standard Weibull method

Summary Makurdi Abeokuta

Parameter MLM 1.665 1.695
MES 1.112 1.148

Error MLM 0.659 0.743
MES 1.008 1.141

MSC MLM 1.044 1.339
MES -0.028 0.303

CD MLM 0.682 0.64
MES 0.221 0.118

R MLM 0.826 0.8
MES 0.47 0.344
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Table 8. Effects of the methods on the Poisson distribution parameters

SoV SS Df MSS F-Value P-value

Between methods 2.111383 7 0.30162608 19.30639 0.000204
Within methods 0.124985 8 0.01562312
Total 2.236368 15

SoV: Sources of variation; SS: Df: degrees of freedom; Sum of square; MSS: Mean sum of square

Table 9. Effects of the Locations on the Poisson distribution parameters

SoV SS Df MSS F-Value P-value

Between locations 0.018595 1 0.01859451 0.11738 0.736983
Within groups 2.217773 14 0.15841236
Total 2.236368 15

SoV: Sources of variation; SS: Df: degrees of freedom; Sum of square; MSS: Mean sum of square

Table 10. Effects of the parameters on the Exponential distribution

SoV SS Df MSS F-Value P-value

Between parameters 0.303076 1 0.303076 564.0981 0.001768
Within parameters 0.001075 2 0.000537
Total 0.304151 3

SoV: Sources of variation; SS: Df: degrees of freedom; Sum of square; MSS: Mean sum of square

Table 11. Effects of the locations on the Exponential distribution

SoV SS Df MSS F-Value P-value

Between locations 0.001064 1 0.001064 0.007024 0.940841
Within locations 0.303086 2 0.151543
Total 0.304151 3

SoV: Sources of variation; SS: Df: degrees of freedom; Sum of square; MSS: Mean sum of square
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p = 0.941, which is greater than 0.05). Table 10 estab-
lished that the method had significant effects on the
exponential distribution of rainfall intensities data at
a 95% confidence level (F7, 8 = 19.306 and p = 2.04 ×
10−4, which is less than 0.05). Table 11 confirmed that
locations had no significant effects on the exponential
probabilities obtained using the two methods at a 95%
confidence level (F1,4 = 0117 and p = 0.737, which is
greater than 0.05).

4 Conclusion

It was concluded based on the findings that MLM
estimator was better than MES based on the values of
MSC, CD, relative error and R. MLM estimator pre-
dicted Weibull probability of rainfall intensity better
than MES. Utilization of PPD in the estimation rain-
fall intensity will help in the prediction of rainfall for
agriculture in attaining sustainable development goal
2 (zero hunger), goal 15 (life on land) and goal 14 (life
below water), help in regulatory measure for flood
control and water security management. There is a
need to evaluate the MLM estimator and other prob-
ability distributions (such as log Normal, Gamma
and Exponential distributions), so as to establish their
performance in predicting rainfall intensities with a
primary objective of achieving sustainable develop-
ment goal 2 (zero hunger), goal 15 (life on land) and
goal 14 (life below water),
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