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ABSTRACT

High Plains Aquifer is one of the most important aquifers in the United
States, accounting for one-fourth of total annual freshwater withdrawal,
and one-fifth of crop production of some major crops. But the area above
this aquifer has not been extensively researched for determining the risk of
groundwater pollution. Therefore, this study was undertaken to determine
the groundwater pollution potential using the DRASTIC model in a Geo-
graphic Information System (GIS) environment. Despite the limited data
availability, DRASTIC model proved effective in delineating areas of High
Plains Aquifer susceptible to groundwater contamination. The results from
the model indicated that large portions of southwestern Texas, central Kansas,
eastern Colorado, eastern Wyoming, western and north-western Nebraska
were highly vulnerable to groundwater pollution whereas Oklahoma had
the lowest vulnerability.
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1 Introduction

Groundwater (GW) withdrawal accounted for more
than 50% of total water withdrawal in the United
States (U.S.) in 2015 (Dieter et al., 2018). Being one of
the most valuable resources, GW is not only crucial
to agricultural production and sustaining global wa-
ter supply, but also, it helps nourishing streamflow
between wet and protracted drought periods and
has a significant impact on the ecosystem. Among
all groundwater bodies in the U.S., also known as
aquifers, High Plains Aquifer (HPA) is the largest
source of GW, which is also the primary source of
water for many communities in eight states in the
Great Plains region. This aquifer is known as “bread-

basket”. for providing 25% of total water supply for
agricultural production in the whole U.S. (Houston
et al., 2013), contributing $7 Billion to the economy
annually. Therefore, the HPA is the most important
groundwater resource in the U.S.

Since the 1960s, the HPA, especially Southern
Great Plains (SGP) is facing several challenges due to
various reasons (Masasi et al., 2019): high depletion
in water level because of continuous irrigation (Datta
et al., 2017; Rudnick et al., 2019); contamination by
numerous organic and inorganic pollutants such as
nitrates, heavy metals, pesticides, precipitation vari-
ability due to ongoing climate change (Datta et al.,
2018), soil erosion due to water runoff, etc. Due to the
lack of direct observation and frequent measurement
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of different quality and quantity indicators of water
in HPA, these challenges are not getting addressed
as fast as they should be. Multiple campaigns were
undertaken by U.S. Geological Survey (USGS) to mon-
itor the groundwater and determine the vulnerability
of the aquifer, but these methods are time-consuming,
costly and sometimes unrealizable because of differ-
ent geographic constraints. This potentially leads to a
loss of valuable resources at a considerable economic
cost. Therefore, determining the vulnerability of GW
in this region is of paramount importance to decide
how the groundwater resources can be managed in a
more sustainable way.

Aquifer vulnerability can be affected by vari-
ous factors including aquifer chemistry, temperature,
transmissivity, tortuosity, gaseous phase transport,
etc. But not all of these data can be obtained eas-
ily and are not readily accessible. Considering the
availability of mappable data, Aller (1985) proposed
a numerical ranking model, DRASTIC, for determin-
ing the vulnerability of aquifers to contamination.
This model uses Depth to water table, net Recharge,
Aquifer media, Soil media, Topography, Impact on
vadose zone, and hydraulic Conductivity to estimate
the vulnerability of aquifers. One of the best ways to
represent the results from DRASTIC model is to com-
bine the results with Geographic Information System
(GIS) software such as – ArcGIS (ESRI, Redlands, CA,
USA). By combining several thematic layers of the
factors involved in the model, the DRASTIC index
produces vulnerability scores of the areas that are
most susceptible to pollution and carries a high risk
for intended users (Babiker et al., 2005).

Previously several pieces of research have demon-
strated the use of the DRASTIC model, combined
with GIS, for determining aquifer vulnerability.
Babiker et al. (2005) conducted a study in central
Japan assessing aquifer vulnerability and reported
GIS to have provided an efficient environment for
having high capabilities of handling large-scale spa-
tial data and making the result from DRASTIC model
easier to interpret. The aquifers reported in that
study had moderate to high vulnerability according
to DRASTIC model. Lathamani et al. (2015) carried
out a similar study in India and determined that most
of the aquifers during last quarter of a year showed
very high vulnerability impacting agricultural and
municipal practices in the area. Fritch et al. (2000)
investigated the Paluxy aquifer in north-central Texas
using DRASTIC model and found that more than 45%
area covered by aquifer had moderate to high ground-
water pollution potential. A statewide study in Ne-
braska, USA was conducted to delineate regions with
higher vulnerability to groundwater pollution poten-
tial and DRASTIC model was implemented using
raster-based information as input (Rundquist et al.,
1991). Other examples include studies conducted in
Iran (Neshat et al., 2013), China (Huan et al., 2012),

Turkey (Sener and Davraz, 2012), and many other
countries. Gurdak and Qi (2012) conducted a water-
quality assessment in the HPA region by determin-
ing nitrate concentration and found northern and
southern parts of HPA have a high probability of con-
tamination. However, to the best knowledge of the
authors, there has been no study implementing the
DRASTIC model to assess the vulnerability of HPA.
Therefore, this study was conducted primarily to de-
velop an ArcGIS based geodatabase for HPA contain-
ing all feature datasets relating to parameters needed
to run the DRASTIC model. The secondary objective
was to use the DRASTIC model to find the regions in
the HPA region that are vulnerable to groundwater
contamination.

2 Materials and Methods

2.1 Study area

This study addressed HPA region that underlies eight
of U.S. states in the great plains, with an area exceed-
ing 450,000 km2 and serves as a primary source of wa-
ter for millions of people in Wyoming, South Dakota,
Nebraska, Kansas, Colorado, Oklahoma, New Mex-
ico, and Texas (McGuire, 2009). The HPA has differ-
ent precipitation regimes, ranging from wet areas in
eastern Nebraska to arid areas in Texas panhandle.
HPA states rely extensively on agriculture, 60% of
their agricultural related sales depends on the wa-
ter extracted from the HPA (Perrin et al., 2018) and
accounts for about 20% of corn, wheat and cotton
production in the United States (Steward and Allen,
2016).

2.2 DRASTIC Model

The DRASTIC model uses a numerical index that is
obtained from ratings and weights assigned to each of
the seven model parameters. Each of the parameters
will have raster files that will be reclassified from 1 to
10 based on their relative effect on the vulnerability
of the aquifer (Babiker et al., 2005). After that, the
parameters are assigned relative weights spanning
from 1 to 5. A weight of 1 means the low impact on
the vulnerability of a parameter whereas a weight of
5 has the highest possible impact on aquifer vulner-
ability. Then, the DRASTIC index (DI) is calculated
according to the following formula:

DI = DrDw + RrRw + Ar Aw + SrSw

+TrTw + Ir Iw + CrCw
(1)

where, D, R, A, S, T, I, and C are the seven DRASTIC
parameters; r and w are the corresponding rating and
weights, respectively. These numerical ratings and
weights were established using the Delphi technique
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Table 1. Data layers and sources for HPA

Data Layer † Source Description

US states layer US Census Bureau (https://www.
census.gov/data/datasets.All.html)

Feature dataset of conterminous US states (poly-
gon; updated in 2017)

Depth to wa-
ter table

US Geological Survey (https://pubs.er.
usgs.gov/publication/sir20175040)

Depth from the ground surface to water table in
feet. These are location values (point shapefile)

Net recharge US Geological Survey (https://pubs.
usgs.gov/ds/777/)

Amount of water from land surface reaching satu-
rated zone (raster, a digital image).

Aquifer media USGS Geologic Map Data Portal (https:
//mrdata.usgs.gov/geology/state/)

Consolidated or unconsolidated rock that serves as
saturated zone material.

Soil media Web soil survey (STATSGO2 database)
(https://catalog.data.gov/dataset/u-
s-general-soil-map-statsgo2-for-the-
united-states-of-america)

Top-weathered portion of unsaturated zone con-
trolling recharge.

Topography Digital elevation map from USGS data
hub (https://www.mrlc.gov/)

The slope of the land surface dictating runoff
and/or percolation of water.

Impact of va-
dose zone

Web soil survey (STATSGO2 database)
(https://catalog.data.gov/dataset/u-
s-general-soil-map-statsgo2-for-the-
united-states-of-america)

The unsaturated zone material controlling the pas-
sage, attenuation of the water to saturated zone.

Hydraulic con-
ductivity

US Geological Survey (*.E00
file) (https://pubs.er.usgs.gov/
publication/ofr98548)

This specifies the ability of an aquifer to transmit
water. This may be good if water has minimal
contaminant, bad if it has a high concentration of
contaminants.

† All projections were already in or were converted to NAD_1983_Albers geographic coordinate system

by Aller (1985) and are well-defined and these same
values were used in this study.

2.3 Data collection

The data used in this study and respective sources
are listed in Table 1.

2.4 Setting parameters for DRASTIC
Model

The DRASTIC parameters and their reclassification
are outlined in Table 2. The depth to water table (D)
was obtained from USGS and reclassified according
to values from Rahman (2008) (Fig. 1). It is one of the
most important parameters in the DRASTIC model
as it depicts the distance the water must travel from
land surface to reach the saturated zone of water, the
aquifer. High water table depth indicates higher pro-
tection potential. Thus, a rating of 10 for D means
the water table is close to the ground surface and 7

means it is deep down. The recharge (R) raster was
classified according to value ranges set by Babiker
et al. (2005). More recharge, rated as 8, means that
the probability of contamination is high (Fig. 1). The
aquifer media (A) refers to the consolidated or uncon-
solidated rock that serves as an aquifer (Lathamani
et al., 2015). Larger grain size and a high number of
fractures mean that more water will infiltrate to the
aquifer media. The GIS layer for aquifer media was
collected from USGS geological map website and the
mineralogy data was collected and reclassified with
information obtained from Lathamani et al. (2015),
Babiker et al. (2005) and Rahman (2008) (Fig. 3). Soil
media (S) information was collected from USGS Web
Soil Survey STATSGO2 database (WSS, 2016). The
“hydgrp” column in the components table was used
to extract information about the soil medium (Fig. 4).

Topography data (T), 30 m digital elevation map
(DEM), were downloaded from the USGS GIS data
portal for 8 states of interest. Then, these images were
mosaiced and extracted by the mask to represent the
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HPA boundary. Mosaicing is a technique that allows
analysts to merge the adjacent raster images together,
and area of interest is separated from the image via
extracting by mask. The reclassification was done ac-
cording to values obtained from (Babiker et al., 2005;
Rahman, 2008) (Fig. 5). The characteristics of the
impact of the vadose zone layer (I) is similar to the
soil media. A different column, “taxpartsize”, from
components table was used to extract soil texture in-
formation. Coarser textured soil was classified with a
high rating and fine-textured soils with low ranking
(Fig. 6). The hydraulic conductivity (C) raster was
also obtained from USGS (Cederstrand and Becker,
1998) and reclassified from low to high rating indi-
cating low conductivity to high conductivity values,
respectively (Fig. 7). After the reclassification was
done on all of the rasters, the raster calculator was
used to generate the vulnerability layer, DRASTIC In-
dex, using equation 1. The reclassification criteria are
often set arbitrarily, according to several past studies
(Huan et al., 2012; Lathamani et al., 2015; Rahman,
2008). This trend was also followed in this study.

3 Results and Discussion

In general, the DRASTIC values ranged from 56 to
184 and the raster cells in the map covered an area of
370,452 km2 (Fig. 8). For ease of interpretation, the
DRASTIC Index (DI) values were classified into three
categories: 56-80 as low vulnerability zones, 80-120 as
moderate vulnerability zone, and 120-184 as high vul-
nerability zone. Previous studies also used arbitrary
ranges of DRASTIC values to describe the vulnerabil-
ity of aquifers (Babiker et al., 2005; Fritch et al., 2000;
Lathamani et al., 2015). Only 0.6% (2,321 km2) of the
total area covered by layer was in low vulnerability
zone, whereas 53.4% area (197,908 km2) was under
moderate vulnerability and the rest 46% area (170,223
km2) was under high vulnerability of groundwater
getting contaminated. As seen in Fig. 8, Oklahoma
had low to moderate vulnerability of contamination.
Southwest Texas had a higher portion of areas under
high pollution potential. Also, the high vulnerability
can be observed in central Kansas, eastern Colorado,
most of Wyoming, northern and northwestern Ne-
braska and some of South Dakota. Overall, the whole
HPA region is dominated by moderate vulnerability
values.

Interpreting from Fig. 1 and Fig. 8, the depth to
water table had a high impact on DI as expected.
More vulnerable areas can be observed in case of low
depth to groundwater table. In addition, the impact
of the vadose zone layer indicates that the areas with
loamy and sandy loam soils, they also face more vul-
nerability and as expected, has high Dr values. The
hydraulic conductivity values are low for Colorado
and Wyoming, but we still see high Dr values be-
cause of the impacts of depth to groundwater table,

soil texture and annual recharge of water. Most of the
HPA region has been dominated by agriculture since
the 1800s. Agriculture makes the soil loose, usually
performed on plain land (little to no slope), situated
where the depth to water table is low. So, combined
with everything, agriculture can multiply the risk of
groundwater contamination ten-fold and Dr values
could increase greatly.

From the perspective of implications, the DI val-
ues show that there is a higher probability of potential
groundwater contamination due to anthropogenic ac-
tivities e.g., irrigation, land use, waste disposal, agri-
cultural practices, etc. on the vulnerable regions of
HPA, although the model does not factor these ac-
tivities in calculation. Since the largest water user
of HPA is irrigated agriculture, the susceptibility of
the aquifer would also be highly associated with the
application of water that could cause the percolation
of undesirable chemicals into the groundwater forma-
tions. Fig. 9 shows the spread of irrigated and rain-
fed cropping area across HPA (Salmon et al., 2015). A
significant proportion of cropping lands can be seen
in Nebraska, that is followed by Kansas and Texas.
It is important to note here that most of these areas
are situated above the regions that are classified as
moderate to highly vulnerable for contamination ac-
cording to DRASTIC index.

Moving on, the vulnerability of the HPA can also
be viewed through the lens of climate anomalies such
as droughts. The dry years in aquifers like HPA could
raise the overall scale of vulnerability because of a
reduced recharge and a greater concentration of agri-
cultural chemicals that infiltrate with lesser dilution
due to reduced availability of water. It is important
to mention here that due to uninterrupted ground-
water supply, the agricultural water consumption
usually does not face any considerable decline in
drought years (Ajaz et al., 2018). For example, the
comparison of the actual evapotranspiration (ETa) in
HPA during drought and non-drought years, 2013
(Fig. 10a) and 2016 (Fig. 10b), respectively, demon-
strated that there was only 20% variation in ETa from
2013 to 2016. Also, during drought years the dryland
farmers tend to supply supplemental water to their
crops amid non-occurrence of anticipated precipita-
tion spells. This infers that the evaporative demand
of crops is met during drought years, while the pos-
sibility of the pollutants staying in the lower vadose-
zone during drought years escalates, and those would
eventually trickle down into the aquifer in wet season
along with an augmented load of wet-year chemical
application.

f this study is to evaluate the reactions of banana
plant as influence by application of plant growth reg-
ulator (PGR) or minerals on growth, physiology, bio-
chemical changes and yield under growth regulator
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Table 2. Reclassification, ratings and index values of DRASTIC parameters

Rating Weight DI

Depth to water table (m) 0 – 4.9 10 5 50
4.9 – 15 9 45
>15 7 35

Recharge (mm yr−1) 102 – 381 8 4 32
51 – 102 3 12
<51 1 4

Aquifer media (Minerals) Sand 9 3 27
Gravel/Coarse-detrital 8 24
Sandstone 7 21
Unconsolidated/ Silt/ Sandstone-Mudstone 6 18
Sandstone-mudstone 6 18
Siltstone/ Mudstone/ Conglomerate-sandstone 5 15
Siltstone-mudstone/ Sedimentary 4 12
Limestone 3 9
Basalt/ Fine-detrital 2 6
Shale/Claystone/Clay 1 3

Soil media (Materials) Sands/gravel 6 2 12
Moderately coarse materials 5 10
Moderately finer materials 4 8
Fine 3 6
Finer materials 2 4
Clay 1 2

Topography (Slope in %) 0 - 2 10 1 10
2-Jun 9 9
6-Dec 5 5
Dec-18 3 3
18 – 181 1 1

Impact of vadose zone Sandy 8 5 40
(Soil texture) Sandy loam 6 30

Loamy 5 25
Silty 4 20
Clay 1 5

Hydraulic Conductivity (m d−1) 0 – 11.4 2 3 6
11.4 – 22.9 5 15
22.9 – 45.7 8 24
45.7 – 137.2 10 30

† DI = DRASTIC Index



Datta and Ajaz Fundam Appl Agric 4(3): 933–942, 2019 938

Figure 1. Depth to water table (DWT) raster
classification

Figure 2. Annual recharge raster classification

Figure 3. Aquifer media raster classification Figure 4. Soil media raster classification
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Figure 5. Topography (% Slope) raster classification Figure 6. Impact of vadose zone raster classification

Figure 7. Hydraulic conductivity raster
classification

Figure 8. DRASTIC Index raster for High Plains
Aquifer
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Figure 9. Irrigated and rain-fed agriculture in High
Plains Aquifer (HPA) region (Source:
Salmon et al. (2015)

(a) (b)

Figure 10. (a) Cumulative Actual ET during year 2013-Drought Year (b) Cumulative Actual ET during year
2016-Non-drought Year (Source: MOD16A2.006, 500 m, 8 day)
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4 Conclusions

The DRASTIC model was successfully integrated
with GIS to map the vulnerability of High Plains
Aquifer (HPA). All of the required layers were re-
classified using values from relevant literature and
also, by arbitrary classification. The DRASTIC index
was calculated and ranged from 56 to 184. Less than
1% of the area in HPA was under low vulnerability
and the rest of the areas had Dr values of more than 80
making these areas vulnerable to groundwater pollu-
tion. The continuous agricultural operations in these
areas could substantially add to the vulnerability of
HPA. A limitation in this study is the classification
of parameters needed for calculation of DRASTIC in-
dex. More effort could be made to more accurately
reclassify these parameters. The categorization of
DRASTIC index is also arbitrary with no widely ac-
cepted range of values. Further research is needed for
proper categorization to match different geographic
locations.
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