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ABSTRACT

Chilling is a substantial stressor for plants. In fact, some biochemical reactions
involved in growth and development of plant are sensitive to temperature.
In particular, chilling stress represents a severe issue for plant growth and
productivity and strategies to alleviate the stress is an important goal for
agriculturists. While, hydrogen peroxide (H2O2) acts as a signalling molecule
and its role in preventing several abiotic stresses like heat, salinity, drought
etc. is well understood. Thus, the present study tested the effects of H2O2
priming in mitigation of chilling stress at germination and seedling stage of
rice. The rice seeds were treated with H2O2 (5, 10 and 15 mM H2O2) solution
for 24 h and exposed to chilling stress either for 6 h d−1 or 12 h d−1 for 7 days.
Results revealed that chilling stress seriously impeded germination indices
(germination percentage, germination rate index, coefficient of velocity of
germination and mean germination time), morphological parameters (shoot
length, root length and fresh weight), total chlorophyll content and antioxi-
dant enzymes (catalase and ascorbate peroxidase) activity. On the other hand,
priming with H2O2 (5 mM, 10 mM and 15 mM) displayed protective effects
on germination indices and growth parameters and conferred a significant
tolerance against chilling stress. Priming with H2O2 also significantly pro-
tected chlorophyll from chilling-induced degradation. Our results provide a
strong foundation that priming with H2O2 confers a positive physiological
effect by enhancing antioxidant enzymes capability (increased catalase and
ascorbate peroxidase activity) of chilling stressed rice plant. Among the
concentrations, 10 mM H2O2 performed relatively better in chilling stress
alleviation. Therefore, this technique can be used for improved rice seedling
production in northern part of Bangladesh under low temperature condition.
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1 Introduction

Almost half of the humankind of the earth consumes
rice (Oryza sativa L.) as a staple food (Fairhurst and
Dobermann, 2002). Mostly, Asian people solely eats
greater than 90% of this rice (Mohanty et al., 2013).
Bangladesh is the fourth-largest rice grower in the
world where about 34.7 million metric tons of rice
is produced annually and around 75% of the arable
land is utilized for its production (BBS, 2017; Ahmed
et al., 2017). Feeding the ever-increasing population
using the inadequate resources is one of the major
challenges that present agriculturalists and plant sci-
entists of Bangladesh are facing. Recently the country
has attained food self-sufficiency but to sustain the
status is the foremost task because due to the climatic
change rice cultivation is being hampered by differ-
ent abiotic stresses such as drought, salinity, flooding
and extreme or low temperature (Osmani et al., 2016;
Amin et al., 2015).

Among these abiotic stresses, cold stress is a mi-
nor stress in Bangladesh, but recently because of se-
vere cold wave during winter season it becomes prob-
lematic for some crops including rice (Rashid and
Yasmeen, 2018). Due to global climatic change the
intensity of cold stress increasing day by day. Impor-
tantly, this year lowest ever temperature in history at
2.6 °C was recorded in northern districts (Bangladesh
Meteorological Department 2018). Before transplant-
ing the Boro rice seedlings in main field, rice seeds
are sown in seed bed in the month of December. Be-
cause of the extreme low temperature the growth of
rice seedlings is being hampered during December-
January in northern region of Bangladesh (BRRI, 2017;
Rashid and Yasmeen, 2018). As well as the quality
of rice seedling hampered which ultimately causes
lower crop yield. Sometimes, farmers do not get
adequate seedlings for transplanting because of the
seedling death due to cold injury (BRRI, 2016; Rashid
and Yasmeen, 2018). Thus, rice production being ham-
pered mainly in northern part of Bangladesh due to
cold stress. Particularly, the low temperature leads
to poor germination, discoloration and swallowed
seedling, eventually makes unhealthy seedlings dur-
ing the seedling stage (Yea et al., 2008; Lukatkin et al.,
2012). In this stage, the cold injury usually appears on
the leaves as a symptom of wilting, discoloration and
inhibition of growth at the 3rd to 4th leaf stage (Hyun
et al., 2016). At the early growth stage in rice, the low
temperature stress affects the newly emerging leaves
to be lack of chlorophyll (Tewari and Tripathy, 1998).
Ultimately, low temperature potentially reduces the
rate of growth and the establishment of plants and
decreases the photosynthetic area, upon which con-
tinued growth is dependent (Yadav, 2010; Hussain
et al., 2018).

Plants are subjected to oxidative stress when ex-
posed to abiotic stresses including chilling (Hussain

et al., 2016, 2018). Chilling stress imposed excess
reactive oxygen species (ROS) production and accu-
mulation in plant’s tissue which ultimately leads to
oxidative damage at cellular and sub-cellular level,
impaired the membranes of cell, ionic balance dis-
ruptions, and deactivation of enzymes and proteins
(Hussain et al., 2018; Tarchoune et al., 2010). More-
over, the over-accumulated ROS interrupts different
cellular macromolecules including DNA, lipids etc.
which are linked with various physiological and bio-
chemical disorders in plants (Das and Roychoudhury,
2014). Plants usually have a very competent and
advanced antioxidant defence mechanism to regu-
late the over-accumulation of ROS (Arif et al., 2016)
which comprised of different enzymatic (e.g., catalase,
CAT; ascorbate peroxidase, APX) and non-enzymatic
(e.g., ascorbic acid, carotenoids and glutathione) an-
tioxidants (Gill and Tuteja, 2010; Chen et al., 2015).
The efficient ROS scavenging capacity has been allied
with tolerance of plants to different environmental
stresses including chilling (Gill and Tuteja, 2010). In
order to accelerate the efficiency of oxidant scaveng-
ing systems under stressful condition scientists are
finding different approaches and seed priming can be
an effective one.

Priming is possibly a vital means to provoked tol-
erance in plants against environmental stresses (Hos-
sain et al., 2015). Among different priming agents,
the priming with hydrogen peroxide (H2O2) may
metabolically prepare plant to fight against the chill-
ing stress because H2O2 is a signal molecule that
overexpress stress related genes (Hossain et al., 2015).
It has been previously shown that pre-treatment of
Zoysia matrella plants with low concentrations of
H2O2 induced chilling tolerance (Wang et al., 2010).
H2O2 treatments improved osmotic stress resistance
of two cucumber varieties by activating antioxidant
system (Liu et al., 2009). Terzi et al. (2014) also ob-
served that exogenous applications of H2O2 at low
concentration alleviated membrane damages and
significantly decreased lipid peroxidation of maize
plants under osmotic-stressed conditions. Low doses
of H2O2 can increase mass and length of roots (Ko-
rystov and Narimanov, 1997). Exogenous H2O2 also
mediates the growth of primary root, lateral roots,
and root hairs (Jiang et al., 2012) and significantly
promote the formation and growth of adventitious
roots of cucumber (Li et al., 2007). H2O2 as a stress
signalling molecule could trigger the activation of
antioxidant capacity in plants to alleviate the oxida-
tive damage and leading to improve physiological
attributes of the plant under stress (He and Gao, 2009;
Goud and Kachole, 2011). From the above discussion
it is clear that, H2O2 priming can modulates antioxi-
dant activities under chilling stress. So this technique
could be used to mitigate the chilling effect in rice
seedlings in the northern region of Bangladesh.

Therefore, the present experiments were con-
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ducted to investigate the ability of exogenous H2O2
priming to promote growth and stimulate stress as-
sociated defensive mechanisms of rice under chilling
stress.

2 Materials and Methods

2.1 Experimental setup

Rice (cv. BRRI dhan29, a high yielding rice culti-
var) seeds were surface sterilized with 2.5% sodium
hypochlorite for 8 minutes and subsequently washed
several times with sterilized distilled water. In the
next step, the disinfected seeds were soaked in H2O2
(5, 10 and 15 mM H2O2) solution for 24 h. After that,
about one hundred H2O2-treated or untreated seeds
were placed on bloating paper per petri dish and 10
ml of distilled water was used daily to ensure water
supply. These petri dishes were placed in a growth
chamber at 70% relative humidity in 12 h : 12 h dark
- light condition for germination. Two temperature
conditions (viz. 6 h 4 °C/ 24 h and 12 h 4 °C/ 24 h)
were maintained to impose the chilling stress. The
control seeds were grown at 25±2 °C temperature
conditions. Therefore, the treatment combinations
were: No chilling stress (CS) (T1, control), 6 h d−1 CS
(T2), 12 h d−1 CS (T3), 6 h d−1 CS + 5 mM H2O2 (T4),
6 h d−1 CS + 10 mM H2O2 (T5), 6 h d−1 CS + 15 mM
H2O2 (T6), 12 h d−1 CS + 5 mM H2O2 (T7), 12 h d−1

CS + 10 mM H2O2 (T8), 12 h d−1 CS + 15 mM H2O2
(T9).

2.2 Measurement of germination indices

Seeds were considered as germinated when the rad-
ical reached 2 mm in length. From 2nd day after
incubation (DAI), numbers of germinated seeds were
recorded up to 4th DAI and by using these germina-
tion counts, several germination indices were calcu-
lated, including germination percentage (GP), germi-
nation rate index (GRI) and mean germination time
(MGT) (Kader, 2005), as well as coefficient of velocity
of germination (CVG) Kader and Jutzi (2004).

GP (%) =
Sg

ST
(1)

CVG (% d−1) =
∑ Ni

∑ NiTi
× 100 (2)

GRI (% d−1) =
∑ Ni

I
(3)

MGT (d) = ∑ NiTi

∑ Ni
(4)

Where, GP is germination (%), Sg and ST are number
of seeds germinated and set for germination, respec-
tively. Ni is the number of seeds germinated on day i
and Ti is the number of days from sowing. The CVG

gives an indication of the rapidity of germination: it
is increased by increasing the number of germinated
seeds and reducing the time required for germina-
tion. GRI is reflected the percentage of germination
on each day of the germination period, where higher
GRI values are indicated higher and faster germina-
tion, which in turn is indicated lower MGT.

2.3 Growth performance measurement

At 7th DAI, different growth parameters were eval-
uated. The growth parameters were assessed by
measuring shoot length (SL), root length (RL), fresh
weight (FW). Shoot length was measured from shoot
base to the leaf tip and root length was measured
from root base to the root tip. Twenty seedlings from
each treatment were weighted for the determination
of FW. Finally, the FW was expressed as mg plant−1.

2.4 Determination of chlorophyll content

Total chlorophyll content (TCC) extraction was done
by taking 0.05 g of fresh shoot with 10 mL of 80%
acetone for 7 days in dark condition. The absorbance
of acetone supernatant was recorded at 645 and 663
nm wave lengths in a UV-VIS spectrophotometer (Shi-
madzu, UV-1201, Tokyo, Japan) to determine the TCC
according to the method developed by Lichtenthaler
(1987) and the results were expressed as mg g−1 FW.

2.5 Antioxidant enzymes activity assay

The shoots of 7-day-old germinated rice seeds were
used for antioxidant enzymes viz. catalase (CAT, EC:
1.11.1.6) and ascorbate peroxidase (APX, EC: 1.11.1.11)
activity determination. The CAT activity was deter-
mined by following the method of Aebi (1974). The
activity of CAT was calculated from the decrease in
absorbance at 240 nm per minute when the extinc-
tion coefficient of H2O2 was 39.4 M−1 cm−1 and the
result was expressed as ‘mmol min−1 g−1 FW’. APX
activity was determined by following the method of
Nakano and Asada (1981). The activity of APX were
calculated from the change in absorbance at 290 nm
per minute when the extinction coefficient was 2.8
mM−1 cm−1. All the absorbance was taken in a UV-
VIS spectrophotometer (Shimadzu, UV-1201, Tokyo,
Japan). The activity of APX was expressed as ‘µmol
min−1 g−1 FW’.

2.6 Statistical analysis

One-way analysis of variance was performed by feed-
ing the data to Minitab 17.0 statistical software. Dif-
ferent letters denote the statistically significant dif-
ferences between treatments at P<0.05, according to
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Fisher’s least significant difference test. Data pro-
vided as means ± standard errors of three replica-
tions for each treatment.

3 Results

3.1 Effect on seed germination

Several seed germination parameters, including ger-
mination percentage (GP), germination rate index
(GRI), coefficient of velocity of germination (CVG)
and mean germination time (MGT) were determined
to estimate the detrimental effects of chilling (6 h,
short period and 12 h, long period) on germination
and the potential ameliorative effects of H2O2 on chill-
ing stressed rice seedlings (Fig. 1). Under chilling
stress conditions, rice seeds showed lower GP after
76 h compared to control. Compared to control, GRI
and CVG were dropped by 20.04 and 22.48%, respec-
tively in response to 6 h and 33.64 and 27.64% in
response to 12 h chilling stress, while MGT was in-
creased by 29.11% in 6 h stress and 38.03% in 12 h
chilling stress. However, these parameters mostly
affected in 12 h chilling stress. On the other hand,
exogenous application of H2O2 increased GP, GRI,
and CVG and decreased MGT of chilling stress (both
6 h and 12 h) in rice seedling. Among the concen-
tration of H2O2, the 10 mM H2O2 showed highest
efficiency in chilling stress mitigation and increased
GP, GRI, and CVG by 145.14, 72.3 and 48.45% while
decreased MGT by 48.45% in response to 6 h chilling
stress relative to chilling stress only seedlings.

3.2 Effect on seedlings growth

To figure out the effect of H2O2 on chilling stress alle-
viation, we also examined several growth parameters
such as SL, RL and FW of rice seedling (Fig. 2). The
SL, RL and FW were significantly reduced by 48.57,
52.93 and 41.51% in response to 6 h chilling stress and
62.74, 70.99 and 60.74% in response to 12 h chilling
stress compared to that of stress free control plants.
On the other hand, all the concentration of H2O2 dis-
played protective behaviour against short term and
long term chilling stress. Among different concentra-
tion of H2O2, 10 mM H2O2 showed highest tolerance
against chilling stress and increased SL, RL and FW
by 50.22, 43.09 and 50.34% in 6 h chilling stress and
94.78, 116.93 and 96.32% in 12 h chilling stress com-
pared to that of chilling stressed only plants.

3.3 Effect on leaf pigments

Chilling stressed rice seedling leaves exhibited a
marked decrease in total chlorophyll content (TCC)
by 33.67 and 68.13% in response to 6 h and 12 h
chilling stress compared to stress free control plants

(Fig. 3a). On the other hand all three different con-
centration of H2O2 priming displayed a protective
function on TCC. Where, 10 mM H2O2 showed high-
est protection in TCC and increased TCC by 15.63
and 62.60% in 6 h and 12 h chilling stress compared
to chilling stress only plants.

3.4 Effect on ROS scavenging capacity

To evaluate positive impact of H2O2 priming on chill-
ing stress we examined CAT and APX activity of the
treatment of rice seedling (Fig. 3b,c). Chilling stress
displayed a significant increase in CAT activity by
23.42 and 41.44% in response to 6 h and 12 h chilling
and APX activity by 24.17 and 45.49% in response to
6 h and 12 h chilling stress compared to stress free
control plants. On the other hand all three different
concentration of H2O2 displayed a protective func-
tion on CAT and APX activity. Among these concen-
trations 10 mM H2O2 displayed highest increase in
both short and long duration chilling condition. In ad-
dition, 10 mM H2O2 increased CAT activity by 154.11
and 175.38% and APX activity by 111.87 and 156.52%
in chilling stressed plants compared to chilling stress
only plants.

4 Discussion

Germination of seed is considered as the most signif-
icant step for determining the success or debacle of
crop establishment. Field crops are extremely sensi-
tive to chilling particularly during germination and
early phases of seedling development. Each seed re-
quires optimum temperature for germination which
confer seeds to generate healthy seedling. But due to
extreme temperature, the normal germination indices
and growth can be affected (Hussain et al., 2018). In
the present study, chilling stress caused a consider-
able reduction of GP, GRI, and CVG, while the time
required to acquire a faster germination (MGT) was
increased in rice seeds, especially under prolong chill-
ing condition (Fig. 1). Previously, several studies have
documented the delayed and non-uniform germina-
tion of rice under chilling stress (da Cruz and Milach,
2004; Ye et al., 2009), wheat (Aflaki et al., 2017) and
Vicia faba L. (Anaya et al., 2018) under salt stress. Chill-
ing stress is known to thermodynamically limit the
kinetics of various physiological as well as metabolic
functions in plants (Ruelland et al., 2009) which fi-
nally evokes a detrimental effect on germination in-
dices of rice seeds. On the other hand, H2O2 priming
exerted a beneficial effect on these parameters and
compensated chilling induced negative effects (Fig. 1).
Protective role of H2O2 on germination indices was
also reported in rice and maize under chilling stress
(Naim, 2015; Li et al., 2017) and cucumber seed un-
der NaHCO3 stress (Sun et al., 2010). Among H2O2
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Figure 1. Effects of hydrogen peroxide (H2O2) priming on (a) germination (%), GP (b) germination rate index,
GRI (c) coefficient of velocity of germination, CVG and (d) mean germination time, MGT of rice seeds
under chilling stress. Data represented in figure is the mean of three replicates for each treatment (n =
3). Letter on top of bar denotes the statistically significant difference at P<0.05 (Fisher’s least
significant difference test). No chilling stress (CS) (T1), 6 h d−1 CS (T2), 12 h d−1 CS (T3), 6 h d−1 CS +
5 mM H2O2 (T4), 6 h d−1 CS + 10 mM H2O2 (T5), 6 h d−1 CS + 15 mM H2O2 (T6), 12 h d−1 CS + 5
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concentrations, 10 mM and 15 mM showed the high-
est protection against short term chilling stress and
conferred the best performance on germination in-
dices while showed relatively lower protection under
long term chilling stress (Fig. 1). Thus H2O2 priming
treatment is useful for rice seeds germination accelera-
tion and seedling quality improvement under chilling
stress.

Like germination index, chilling stress also ham-
per plant growth and biomass of plants in seedling
stage. In our current experiment root length, shoot
length, and fresh weight of plants were decreased
markedly in response to chilling stress as also ob-
served some other crop plants (Xing et al., 2011; Hus-
sain et al., 2016; Thakur et al., 2010). Chilling stress
limits root growth and development by decreasing
root length, biomass, and morphology which ulti-
mately decrease volume of the root system for up
taking the nutrients and water (Cutforth et al., 1986;
Stewart et al., 1990). This reduced nutrient and wa-
ter uptake impact on overall morphology of plants
which is indicated by decreased shoot length and
fresh weight (Fig. 2). However, priming with H2O2
reduced the chilling induced negative effects on these
parameters by improving root length, shoot length
and fresh weight of plants (Fig. 2). Similar result was
reported in Zoysia matrella under chilling stress (Wang
et al., 2010), wheat (Li et al., 2010), rice (Roy et al.,
2016) and Allium cepa (El-Mageed, 2016) plants under
different abiotic stresses. H2O2 might activated dif-
ferent signalling mechanism which ultimately mod-
ulated growth promoting gene expression and an-
tioxidant defence system that improved growth and
biomass of plants (Prasad, 1994; Hossain et al., 2015).

Rate of photosynthesis is an important determi-
nant of growth and development of plants which
solely depends on capturing light energy by chloro-
phyll. Thus chlorophyll content is regarded as an
index to reveal the abiotic stress resistance of plants
(Smillie and Hetherington, 1983; Gengmao et al., 2014;
Asaeda and Rashid, 2017; Parveen et al., 2017). In
the present study, TCC in rice leaves was declined
markedly in relation to the increasing time duration
of chilling stress (Fig. 3a) as also observed in bermuda
grass under chilling stress (Fan et al., 2015). This
declination of TCC might hampered photosynthesis
of plants that ultimately reduced plant growth and
biomass (Fig. 2 & Fig. 3a). Chilling stress might in-
crease the level of ROS which injured membrane of
chloroplast and reduced chlorophyll of rice plants.
On the other hand priming with H2O2 elevated TCC
in chilling stressed plants (Fig. 3a). Similar enhance-
ment of TCC after H2O2 treatment was observed in
drought stressed cucumber seedling (Sun et al., 2016).
Priming with H2O2 elevated TCC perhaps by pro-
tecting chloroplast membrane from chilling induced
injury or up regulating chlorophyll synthetic enzyme.

Plants are sessile in nature. Thus, it cannot move

the location when it encounter with unfavourable en-
vironment. But through the course of evolution, plant
develops some defence mechanism to counteract the
unfavourable environment induced stress through
regulating enzymatic and non-enzymatic antioxidant.
In our experiment, chilling stress increased CAT and
APX activity significantly (Fig. 3b,c) as also observed
in tomato under cold stress (Iseri et al., 2013), maize
(Tahjib-Ul-Arif et al., 2018) and Allium cepa plants
under salt stress (El-Mageed, 2016). But this level
of increase of the APX and CAT is not sufficient for
protecting plant from chilling induced stress. Thus
deterioration of growth and biomass occurred in cur-
rent experiment (Fig. 2). On the other hand priming
with H2O2 further increased CAT and APX activity
and protected rice plants from short term chilling
stress more effectively than long term chilling that is
visualized by improved growth and biomass (Fig. 2
& Fig. 3b,c) as also observed in different plants such
as tomato (Iseri et al., 2013) and Allium cepa plants
(El-Mageed, 2016). Improved enzymatic antioxidant
might help to reduce ROS which subsequently pro-
tected membranes and cell machineries which ulti-
mately conferred tolerance rice plants (Das and Roy-
choudhury, 2014).

Finally it could be concluded that, the H2O2 prim-
ing enhanced growth and photosynthetic pigments
in rice seedlings and ensure better protection against
chilling-induced oxidative stress by enhancing antiox-
idant enzymes. Among different concentrations, 10
mM H2O2 performed better in terms of germination
indices, growth and pigment protection. Therefore,
the 10 mM H2O2 priming can be used to produce
quality seedlings under chilling stress condition.
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