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More than two billion people across the world are iron (Fe) and zinc (Zn) defi-
cient, the majority of them are rural poor living in developing countries. Poor
people cannot afford diversified diets, nutrient supplements and fortified
foods. Thus, biofortification appears to be a good means of enriching mi-
cronutrients to food crops and it can be done through conventional breeding,
transgenic or agronomic approach. Landraces and wild relatives having high
mineral contents are used in the breeding programme to develop new vari-
eties with high yield and elevated mineral characteristics. In conventional
breeding, parent lines with high mineral levels are crossed and back-crossed
over several generations to produce plants that have enhanced level of min-
erals. Transgenic approach has made it possible to transfer candidate gene
from the same or a different species or organism to the intended crops that
low in minerals. Internationally the ‘HarvestPlus” programme has taken
initiative to address micronutrient malnutrition of rural poor in developing
countries through development of staple food crop varieties (rice, wheat,
maize, cassava, pearl millet, beans and sweet potato) that rich in Fe, Zn and
Vitamin A (S-carotene). The whole amount of minerals present in plant foods
is not bioavailable to humans due to presence of antinutritional compounds
(e.g. phytate) that interferes with the absorption of nutrients. Agronomic
biofortification provides temporary micronutrient increase through fertilizer
application. This approach could be complementary to breeding strategy for
achieving greater success of breeding efforts for micronutrient enrichment of
food crops. This paper presents a comprehensive review of the progress of
biofortification research, indicating a sustainable strategy to enhance the mi-
cronutrient concentration in staple foods and thereby reducing micronutrient
malnutrition.
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1 Introduction

Thus, it is a biological process of adding micronutri-
ents to food crops through breeding or agronomic ap-
proach. Itis recognized as a good means of dietary im-

Micronutrient malnutrition is a great concern in the
present day world. Access to food is not enough,
access to nutritious food is important for a healthy
nation. Humans require 10-15 mg Fe and 12 -15 mg
Zn daily (Welch and Graham, 2004). The FAO has
five objectives, of which objective 1 is to ‘help elimi-
nate hunger, food insecurity and malnutrition” (FAQ,
2019). Biofortification means biological fortification.

provement of malnourished rural population (Bouis,
2013; Garg et al., 2018). The agricultural system that
produces foods in the developing world usually does
not provide enough micronutrients (trace elements
and vitamins) to meet the human needs, although the
production of carbohydrates via cereal crops is ade-
quate to feed the world (Welch et al., 1997). In devel-
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oping countries, the staple cereals (rice, wheat, maize)
are largely grown in micronutrient, particularly Zn
deficient soils and the farmers do not regularly use
micronutrient fertilizers, thus the grains contain low
amount of micronutrients. Furthermore, minimum
attention is given to the production of micronutrient-
rich non-staples, such as pulses, vegetables and fruits.
Again, the increased prices of vegetables and pulses
have made it difficult for the poor to afford quality
diet (Bouis et al., 2011a). Inadequate intake of mi-
cronutrients in diets can affect the normal functions
of brain, immunity and reproductive systems (World
Bank, 1994).

A number of studies have been done and are in
progress regarding biofortification of cereals as in
rice (Behura et al., 2011; Mubarak et al., 2015), wheat
(Cakmak et al., 2010; Guzman et al., 2014) and maize
(Qin et al., 2012; Simic et al., 2011). It is now well
agreed that adoption of two strategies (agronomic
and breeding) can increase the micronutrient concen-
trations of food crops and thus consumption of these
foods can reduce the malnutrition of humans. Agro-
nomic technique through fertilizer management can
rapidly increase the micronutrient concentration of
crop foods (Zuo and Zhang, 2011; Cakmak and Kut-
man, 2018) and breeding technique (conventional and
transgenic) through developing new varieties can en-
hance the capacity of plant roots to take up nutrients
from soil and accumulate them in edible parts (White
and Broadley, 2009).

This article aims at reviewing the progress of bio-
fortification research and identifying sustainable strat-
egy to enhance micronutrient concentration in sta-
ple foods and thereby reducing the malnutrition of
world poor. It is hypothesized that the breeding ap-
proach alone cannot adequately address micronutri-
ents enrichment of food grains, agronomic approach
via fertilizer application can effectively complement
the breeding strategy.

2 Micronutrient malnutrition
2.1 Concept

Malnutrition can arise in three forms (Ritchie and
Roser, 2020): (a) hunger and undernourishment, (b)
obesity or overnourishment, and (c) micronutrient de-
ficiencies. In this article, human malnutrition in the
form of micronutrient deficiency has been addressed.
Micronutrient refers to a substance that is essential in
trace amounts for the growth and metabolism of a liv-
ing organism. To a human nutritionist micronutrient
could be a vitamin or a mineral, while plant scientists
mean it only minerals. So, nutritionally micronutrient
malnutrition is a dietary deficiency of minerals and
vitamins.
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2.2 Essential micronutrients

Humans need 11 trace elements (minerals) and 14 vi-
tamins for their normal growth and health. Both ani-
mals and plants require eight essential trace elements,
but not all the same. A list of minerals required for
humans, livestock and crops is shown in Table 1 and
the amount of requirement for humans is presented
in Table 2. Each mineral nutrient has a definite role
in human, animal and plant metabolisms. Of the es-
sential micronutrients, the most frequently reported
deficiencies for human health are Fe, Zn, I and vita-
min A (Welch and Graham, 2004), the reason can be
attributed to the smaller amount of micronutrients in
cereal grains (Garg et al., 2018) and the higher amount
of antinutrient substances e.g. phytic acid (White and
Broadley, 2009), a substance that inhibits the absorp-
tion of mineral elements by the gut. The levels of trace
elements like Cu, Zn, Mn, Fe and Mo in crops can be
sufficient for optimum yields, but they may be sub-
optimal to meet the needs of livestock (Shukla et al.,
2018). Cobalt is essential for livestock and legume
(pulse) crops. Humans need 14 vitamins which in-
clude water-soluble vitamins viz. ascorbic acid, bi-
otin, cobalamin, folic acid, niacin, pantothenic acid,
pyri-doxine, riboflavin and thiamin and fat-soluble
vitamins viz. retinoic acid, calciferol, tocopherol, phyl-
loquinone, and menoquinone (Graham et al., 2001).

2.3 Hidden hunger

Unlike energy-protein undernourishment, the health
impact of micronutrient deficiency is not always visi-
ble; it is therefore also called ‘hidden hunger’. Swami-
nathan (2014) states, ‘Hidden hunger is one vibrant
of hunger which arises from lack of micronutrients’.
Pregnant women and children are at greater risk of
micronutrient deficiencies. This is due to higher phys-
iological requirements; pregnancy and childhood de-
velopment often create demand for specific vitamins
and minerals. Based on the global burden of disease
estimates there are 26 major risk factors of human
health, of them Fe deficiency ranks 9th, Zn deficiency
11th, and vitamin A deficiency 13th (Ezzati et al,,
2002).

Poor diet is a major cause of hidden hunger. Ce-
real based diets, the largest source of energies (calo-
ries) for the rural people, are relatively low in vita-
mins and minerals which results in hidden hunger.
In addition, poverty is a major factor that limits the
access to nutritious foods e.g. meat, milk, fish, fruits,
vegetables (Bouis et al., 2011a). About 800 million
people in the world are chronically hunger (calorie
deficiencies) (FAO et al., 2017) and more than 2 bil-
lion people are affected by hidden hunger (micronu-
trient deficiencies), the vast majority from develop-
ing countries (WHO, 2006; McGuire, 2015; Hodge,
2016). Based on the Disability-Adjusted Life Years
(DALYs) data, Godecke et al. (2018) have observed
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Table 1. Essential micronutrients required for humans, livestock and crops T

Micronutrient Humans Livestock Crops
Boron (B) No No Yes
Cobalt (Co) Yes Yes No
Copper (Cu) Yes Yes Yes
Iron (Fe) Yes Yes Yes
Manganese (Mn) Yes Yes Yes
Molybdenum (Mo) Yes No Yes
Zinc (Zn) Yes Yes Yes
Fluorine (F) Yes No No
Iodine (I) Yes Yes No
Selenium (Se) Yes Yes No
Chlorine (Cl) No No Yes
Chromium (Cr) Yes No No
Silicon (Si) Yes Yes No
Nickel (Ni) No No Yes
T Source: Bell and Dell (2008);
Table 2. Amount of essential micronutrients required for humans *
Element RDA RNI UL SUL
Fe (mg) 8.0-18.0 11.4 45.0 17.0
Zn (mg) 8.0-11.0 9.5 40.0 25.0
Mn (mg) 1.8-2.3 >1.4 11.0 4.0
Cu (mg) 0.9 1.2 10.0 10.0
I (ng) 150 140 1100 500
Se (ng) 55 75 400 450
Mo (ng) 45 50-400 2000 NS
Cr (ug) 25-35 >25 NS NS
F (mg) 3-4 NS 10.0 NS
Si (mg) NS NS NS 1500

t Source: White and Broadley (2005);

NS = Non specified; RDA = Recommended daily allowance (US rec-

ommendation); RNI = Reference nutrient intake (UK recommendation) (Amount enough for at least 97% in a
group); UL = Upper intake level (US recommendation); SUL= Safe upper level (UK recommendation)

that all country-level determinants have larger effects
on the burden of chronic hunger (calorie deficiencies)
than on the burden of hidden hunger (micronutrient
deficiencies), and complementary micro-level inter-
ventions are required to end hidden hunger. Hidden
Hunger Index (HHI) of different countries of south
Asia and south-east Asia are shown in Table 3.

2.4 Micronutrient malnutrition in south
Asia

The situation of Fe and Zn deficiency is worse in
south and south-east Asia where high proportion of
cereal crops, such as rice and wheat, is consumed as a
staple food (Cakmak, 2008; Stein, 2009). Cereals con-
tribute about 60% for Zn and 55% for Fe to the daily
intake of these minerals by Bangladeshi people (Islam

et al., 2014). Ahmed et al. (2016) has reviewed the mi-
cronutrient deficiencies among children and women
in Bangladesh. The review states that as per National
Micronutrients Status Survey report (2011-12), among
the preschool-age children 20.5% are deficient in vita-
min A, 44-5% in Zn and 10.7% in Fe. About 57% non-
pregnant and non-lactating women are Zn deficient,
and 25% women Fe deficient, and nearly 50% preg-
nant and lactating women are anaemic, induced by Fe
deficiency. WHO (2007) estimates that in India about
27% population is suffering from Zn deficiency in-
duced disorders which include poor immune system,
diarrhea, poor physical and mental growth. Children
are vulnerable to Zn deficiency which is the reason
for 4.4% of the total child deaths in the world (Black,
2003).
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Table 3. Hidden Hunger Index (HHI) and micronutrient deficiencies in south Asia and south-east Asia ¥

Region Country Deficiency prevalence (%)

HHI score Znt Fe S Vitamin A 1

South Asia Afghanistan 47.7 59.3 19 64.5

India 48.3 479 34.7 62

Pakistan 26.7 42 25.5 12.5

Bangladesh 29.3 43 23.5 21.7

Sri Lanka 22.3 19.2 12.6 353

Nepal 353 49.3 242 323

Bhuttan 33.3 375 40.3 22

Maldives 30 31.9 48.9 94

South-East Asia Indonesia 27.3 40.1 22.3 19.6

Thailand 14.7 15.7 12.6 15.7

Philippines 30.7 33.8 18.2 40.1

Malaysia 11.7 15.6 16.2 3.5

Singapore NA 44 11.3 NA

Vietnam 24 43.3 171 12

Myanmar 36.3 40.6 31.6 36.7

Cambodia 31 39.5 31 22.3

Laos 38.7 47.6 24.1 447

Brunei NA 11.6 14.5 NA

Timor-Leste 39 55.7 15.8 45.8

* Source: Muthayya et al. (2013);

§ Anemia as proxy for Fe;

Among the developing countries, Pakistan is rec-
ognized as one of the highest levels of child malnu-
trition country (Asim and Nawaz, 2018). In Asia,
there are almost half of the total stunned children and
two-thirds of all wasted children under the age of 5
years (UNICEF, 2015). Abeywickrama et al. (2018)
from Sri Lanka reported an abundance of Fe, Zn, Ca,
folate, and vitamin A deficiencies, with females be-
ing more vulnerable than males. Despite recent suc-
cesses in economic growth, agricultural output and
health care, the prevalence of micronutrient deficien-
cies is high in south Asia. Harding et al. (2017) have
reviewed the situation using the metric of stunting
(indicator of Zn deficiency). Pakistan has the high-
est national prevalence (44%) (AKU, 2011), followed
by Afghanistan (41%) (Ministry of Public Health and
UNICEF and Aga Khan University, 2014) and Nepal
(41%) (MoHP, 2012), India (39%) (Raykar et al., 2015),
Bangladesh (36%) (ICDDR,B, 2013) and Sri Lanka
(13%) (Jayatissa et al., 2014). In Bangladesh 57% non-
pregnant women and in Pakistan 41% women are Zn
deficient. In south Asia, excepting Sri Lanka, about
40% children under 5 years are anemic, in Sri Lanka,
this level is 20-0-39-9% (UNICEEF et al., 2001). In In-
dia, Bangladesh and Nepal, the anaemia problem
prevails more in rural areas than in urban. Iron de-
ficiency causes about half of anemic populations in
south Asia (Kassebaum et al., 2014).

NA = Data not available, HHI score = [Stunting (%) + Anamia (%) + Low
serum retinol (%)] / 3, three components equally weighted;
T Low serum retinol, <0.7 pmol L~!

1 Stunting as proxy for Zn;

2.5 Ways to address micronutrient mal-
nutrition

Human micronutrient malnutrition can be addressed
in four possible ways (Ritchie and Roser, 2020):

(a) Supplementation: Use of concentrated micronu-
trients in pill, powder or liquid form;

(b) Food fortification: Addition of micronutrients
to food products during processing such as rice
milling, wheat flours;

(c) Biofortification: Addition of micronutrients to
food crops by breeding or agronomic method.

(d) Diet diversification: Consumption of micronu-
trient rich diet, e.g. fruits, vegetables, pulses
etc.

In the past, nutrient supplementation, food forti-
fication and diet diversification were largely used as
means of reducing micronutrient deficiency (Mayer,
2005; Brown et al., 2007; Casey et al., 2009; Eneroth
et al., 2010; Ritchie and Roser, 2020). However, these
approaches had limited success (Ssemakula and Pfeif-
fer, 2011). Child mortality from diarrhoea and pneu-
monia reduced much in Bangladesh for use of ‘baby
zinc’ tablet developed by ICDDR,B (Baqui, 2002;
Brooks et al., 2005). However, fortification and supple-
mentation programs can complement biofortification
for better use by urban people, not by rural people.
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3 Biofortification

There are two broad approaches of micronutrient bio-
fortification in crops: breeding and agronomic. Breed-
ing approach includes conventional breeding and ge-
netic engineering (transgenic). Agronomic approach
covers fertilizer management, variety screening and
crop diversification.

3.1 Breeding method

Both conventional breeding and genetic engineer-
ing (transgenic) can play a good role to increase the
Fe and Zn concentrations of edible parts of crops
(Ghandilyan et al., 2006).

3.1.1 Conventional breeding method

The breeders generally give more attention to the de-
velopment of crop varieties for yield improvement
(Belford and Sedgley, 1991; Peng et al., 1999) and
resistance to biotic (Datta, 2002; Pasalu et al., 2008)
and abiotic stresses (Ashraf et al., 2012). Recently
many crop scientists have paid considerable atten-
tion to the improvement of micronutrient density in
the food crops (Zhang et al., 2012). For successful
breeding for higher mineral content, exploration of
genetic variability is essential and also knowledge
about the genetics of the observed variation and geno-
type x environment interaction is important (Welch
and Graham, 2004). As stated by Nair et al. (2013),
the variation in mineral concentrations (0.03-0.06 g
kg~! for Fe, and 0.02-0.04 g kg ! for Zn) among the
mungbean genotypes renders the scope for mineral
enrichment in the newly developed varieties. Reports
are available about variation in Fe and Zn concentra-
tions of wheat grain due to genetic variability (Ren-
gel et al., 1999; Cakmak et al., 2002; Velu et al., 2011;
Pant et al., 2020). The genetic variation in grain Fe
and Zn concentrations among the cultivated varieties
of cereals (e.g. wheat) is found generally low, but
greater variation is often found in the wild relatives
(Welch et al., 2005; Chhuneja et al., 2006; Pfeiffer and
McClafferty, 2007; Cakmak, 2008; Tiwari et al., 2008).
Wild accessions might have 2-fold higher grain Fe
and Zn concentrations than the widely grown vari-
eties for many cereals (White and Broadley, 2005).
The CIMMYT breeding program has developed high-
yielding bread wheat lines through hybridization and
selection that contained 10-90% higher grain Zn and
Fe concentrations than popular commercial varieties
(Guzman et al., 2014).

3.1.2 Transgenic (genetic engineering) method

Transgenic approach deals with improvement of min-
eral uptake from root zone, translocation to the shoot
and accumulation in edible tissues, and also reduc-
ing the concentration of antinutrients and increasing
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the concentration of promoter substances (White and
Broadley, 2005; Davies, 2007; Zhu et al., 2007). Lim-
ited works have been done on vegetable crops with
respect to micronutrient biofortification. Modern bi-
ology technique (genetic engineering) can help veg-
etable breeders to incorporate candidate genes into
elite cultivars for higher mineral content and thereby
improving the mineral value (Gomathi et al., 2017).
Bt brinjal (Solanum melongena) is the first genetically
engineered crop in Bangladesh (Shelton et al., 2018).

During rice milling, more than 50% of the Zn
could be lost and the remaining portion of Zn might
not be fully available for intestinal absorption due
to presence of antinutrient compounds e.g. phytates
(Das et al., 2018). Thus it is suggested that biofortifi-
cation programme should also aim at Zn partitioning
more to seed endosperm. Garg et al. (2018) has given
a good analysis about transgenic approach. When
genetic diversity is not available, genetic transforma-
tion could be a better option. In this approach, once a
useful gene is discovered, that can be utilized in mul-
tiple crops. Various genes from different sources have
been utilized to enhance the level of vitamins, min-
erals, essential amino acids, and essential fatty acids
in the food crops. Examples are phytoene synthase
(PSY), carotene desaturase, and lycopene S-cyclase
for vitamins, ferritin and nicotinamine synthase for
minerals, albumin for essential amino acids, and A6
desaturase for essential fatty acids.

3.1.3 The ‘HarvestPlus’ programme

The HarvestPlus Challenge Programme on ‘Bioforti-
tied Crops for Improved Human Nutrition” has been
initiated in 2004 with the objective to develop culti-
vars of staple food crops with rich in Fe, Zn, and vita-
min A (B-carotene). The Consultative Group on Inter-
national Agricultural Research (CGIAR) has started
this programme with financial support from the Bill
and Melinda Gates Foundation, the World Bank, and
USAID. It is an interdisciplinary alliance of research
institutions and implementing agencies. The target
crops include 7 food crops such as rice (Oryza sativa
L.), wheat (Triticum aestivum L.), maize (Zea mays
L.), cassava (Manihot esculenta Crantz), pearl millet
(Pennisetum americanum Leeke), beans (Phaseolus vul-
garis L.) and sweet potato (Ipomoea batatas L.). Those
crops have been chosen based on the observation
that those foods are consumed as staple foods by the
world’s poor. The HarvestPlus programme is going
on in south Asia for rice Zn (target 28 mg g~ !) in
Bangladesh and India, for wheat Zn (target 28 mg
g_l) (& Fe secondary) in India and Pakistan, and
for lentil Fe (target 70 mg g~ ') (& Zn secondary) in
Bangladesh, Nepal and India (HarvestPlus, 2014).
Success of biofortification programme depends
on three factors, as outlined by Bouis et al. (2011b).
The factors are: (i) the biofortified crop must be high
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yielding and profitable to the farmer, (ii) the biofor-
tified crop must show as efficacious and effective in
reducing micronutrient malnutrition of humans, and
(iii) the biofortified crop must be acceptable to both
farmers and consumers in the regions where people
are afflicted by micronutrient deficiency. All these
points are well taken in the HarvestPlus program
(Hotz and McClafferty, 2007). Thus, the biofortified
crop variety should be high yielding with high min-
erals content and acceptable to the people suffering
from micronutrient malnutrition. For example, BRRI
dhan62 (Zn enriched rice variety) has not been popu-
larized among the farmers in Bangladeshi due to low
yield potential (4.0-4.5 t ha_l). However, the later va-
rieties (BRRI dhan64, 72, 74 and 84) have addressed
this problem.

3.1.4 Bioavailability of micronutrients

Micronutrient bioavailability refers to the proportion
of a nutrient that is absorbed from the diet and used
for normal body functions (Aggett, 2010). Bioavail-
ability of a nutrient is regulated by some external and
internal factors. External factors include food matrix
and chemical form of the nutrient and internal factors
are gender, age, life stage (e.g. pregnancy), etc. Not
the whole amount of minerals present in plant foods
is bioavailable to humans due to presence of antinutri-
tional compounds that interfere with the absorption
or utilization of the nutrients in humans (Welch and
Graham, 1999). In general, seeds and grains of sta-
ple food crops contain very low bioavailable levels
of Fe and Zn (i.e., about 5% of the total Fe and about
25% of the total Zn present in the seed is bioavail-
able). So far, phytic acid (myo-inositol-1,2,3,4,5,6-
hexakisphosphate), fibres (e.g. cellulose), polyphe-
nols (e.g. tannins), haemagglutinins (e.g. lectins) and
heavy metals (e.g. Cd) are recognized as antinutri-
tional compounds (Graham et al., 2001; Hurrell, 2004;
Welch and Graham, 2004). Phytic acid or phytate can
strongly bind divalent cations (e.g. Zn?>") and thus
limit the cation bioavailability, even in the digestive
tract. On the contrary, phytate has positive function
since it is a major storage form of seed phosphorus
that needed for germination.

3.1.5 Mechanisms of Fe and Zn absorption

Plants possess two mechanisms for Fe acquisition
from soil. In Strategy I (dicots and non-graminaceous
monocots), the roots acidify the rhizosphere and re-
lease organic acids and phenolic compounds to in-
crease Fe3* concentrations in the soil solution. These
compounds chelate Fe>*, which is subsequently re-
duced to Fe?* by ferric reductase enzymes in the
plasma membrane of root epidermal cells (Wu et al.,
2005; Mukherjee et al., 2005). In Strategy II (gram-
inaceous monocots such as rice, corn and wheat),
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phytosiderophores (structural derivatives of mug-
ineic acid) are released into the rhizosphere to chelate
Fet, and the Fe’'-phytosiderophore complex is
taken up by root cells (Roberts et al., 2004; Ishimaru
et al., 2006). Concerning Zn acquisition, it is assumed
that the most Zn is transported symplastically across
the root to the xylem via the apoplast (White et al.,
2002; Broadley et al., 2007). Zinc is taken up across
the plasma membrane of root cells as Zn** or as a
Zn—phytosiderophore complex (Suzuki et al., 2006;
Broadley et al., 2007; Ismail et al., 2007). A number of
48 putative genes regulate the transport of Fe and Zn
for accumulation in kernels (maize) which indicates
that mineral accumulation in cereal grains is a com-
plex polygenic process (Sharma and Chauhan, 2008;
Magbool and Beshir, 2018). The Zn and Fe concentra-
tions in cereals is reported to be positively correlated
(Jahiruddin and Islam, 2018). Chakraborti et al. (2009)
has explained the correlation between kernel (maize)
Zn and kernel Fe in terms of pleiotropic effects or
linkage among the genes regulating these elements
concentration.

3.2 Agronomic approach

Agronomic biofortification greatly concerns with fer-
tilizer management to elevate the mineral concentra-
tions in edible portions of crops (White and Broadley,
2009). For increasing the fertilizer use efficiency the
4R nutrient stewardship (right source, right rate, right
time and right place) of fertilizer application is impor-
tant (Johnston and Bruulsema, 2014). Zinc deficiency
is pronounced in calcareous and wetland soils, and as
crop maize and wetland rice are the most responsive
to zinc fertilization (Jahiruddin, 2015). In situation,
when availability of a nutrient in soil is low for fix-
ation or any other reason and when mobility of a
mineral within plant body is low, foliar spray of solu-
ble inorganic fertilizers would be very helpful. It is
reported that soil application combined with foliar
spray is more effective in increasing micronutrient
concentration in grains (Guo et al., 2016; Magbool
and Beshir, 2018). Foliar application of Fe in rice
(Yuan et al., 2012) and wheat (Aciksoz et al., 2011),
and foliar Zn in rice (Wei et al., 2012) and wheat (wen
Yang et al., 2011) are reported to increase their concen-
tration in grains. Foliar Zn application during early
milk stage of rice could be the most effective way to
elevate grain Zn concentration (Mabesa et al., 2013).
Besides fertilizer management, use of soil mi-
crobes, especially mycorrhizal fungi and plant growth
promoting rhizobacteria (PGPR) such as Bacillus, Pseu-
domonas can play a good role for acquisition of im-
mobile mineral elements from the root zones (Rengel
et al., 1999; Mishra et al., 2011; Sharma et al., 2013).
Thus, micronutrient fertilizers, organic manures and
microbial biofertilizers need to be added to soil in
an integrated way. Liming is also important for acid
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soils (pH<5.5) to reduce the toxicity of Al and some
micronutrients (Fe, Zn and Mn). Crop varieties such
as rice varieties may vary in yield potential and mi-
cronutrient density in their edible parts. They may
differ in their capacity to absorb Fe and Zn from soil
(Shivay et al., 2010; Jahiruddin and Islam, 2018). Thus,
selection of a genotype which is high yielding and
possesses comparatively higher efficiency to absorb
and translocate micronutrients from roots to grains
can be regarded as a good agronomic practice. Joy
etal. (2015) in Africa reported 23, 7 and 19% increased
Zn concentration in maize, rice and wheat grains due
to soil application, and 30, 25 and 63% Zn increase for
foliar spray in these crops, respectively.

Erosion and leaching loss of nutrients, liming of
acid soils, and minimum use of micronutrient fertil-
izers and organic manure are the good reasons for
micronutrient deficiencies in agricultural soils (Fage-
ria et al., 2002). Positive influence of Zn fertilization is
reported on Zn concentration of rice and maize grains,
mungbean seeds, tuber (potato), curd (cauliflower)
grown in alluvial soils of Bangladesh (Hossain et al.,
2008; Sarker et al., 2019a,b). An increment of 4-8 ng
g~ Zn in wheat grain and 2-4 pg g~! Zn in rice grain
is possible through Zn fertilization (Jahiruddin and
Islam, 2018). Farmers of south Asian countries com-
monly use N, P and K fertilizers; use of micronutrient
fertilizers is limited (Jahiruddin, 2019). Positive infor-
mation is also reported. Shukla et al. (2018) demon-
strates that the extent of Zn deficiency in Indian soils
is in declining trend and currently it is 36.5% Zn defi-
ciency which shows farmers” awareness to apply Zn
fertilizers.

Efficient management of N and Zn fertilizers
would help enhance the grain Fe and Zn concentra-
tions, as evidenced by positive correlation of seed Fe
and Zn with N contents in several crops (Zhang et al.,
2008; Cakmak et al., 2010; Kutman et al., 2010). In
many cases, there is found inverse relationship be-
tween grain yield and grain Zn concentration (Garvin
et al., 2006; McDonald et al., 2008). Information is
also available that grain yield increases, along with a
considerable increase in grain Zn concentration, as re-
ported from Pakistan (Zou et al., 2012), China (Karim
et al., 2012) and Turkey (Yilmaz et al., 1997). Siddika
(2019) observed a synergistic relationship between N
and Zn concentrations of rice.

3.3 Benefits and limitations of biofortifi-
cation

There is an added benefit of agronomic biofortifi-
cation that the micronutrient rich seeds of bioforti-
fied varieties would produce viable and vigorous
seedlings and thus would improve disease resistance
and growth characteristics, with giving yield bene-
fits (Rengel and Graham, 1995; Graham and Welch,
1996; Cakmak, 2008). A great disadvantage is that
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agronomic biofortification gives short-term benefits
and therefore, every time fertilizer application is nec-
essary that would add an extra cost. Furthermore,
fixation of Zn and Fe may occur in high pH soils
that limit the capacity of biofortified crops to absorb
them from soil. Low yield, interactions between geno-
type and environment, lack of sufficient genetic di-
versity for breeding program, consumer resistance
and safety of genetically modified (GM) crops are
the main weaknesses of genetic biofortification (Falk
et al., 2002; Cakmak, 2008; Palmgren et al., 2008; Joshi
et al., 2010). Moreover, adoption of biofortified va-
rieties depends on the factors that they should per-
form higher yield, with higher stress tolerance and
other qualities such as taste, color, and flavor (Wolson,
2007). Crops fortified with B-carotene (vitamin A) ex-
hibit a deep yellow to orange color as seen in golden
rice, orange-fleshed sweet potato, and yellow cassava
(Pray et al., 2007; Ramaswami, 2007). On the contrary,
Zn or Fe enriched varieties does not have such visible
characteristics and this limits their acceptance by the
consumers.

Breeding approach is a long-term process and
needs tremendous efforts and time, requiring number
of crossing and backcrossing activities over a number
of years, and its success depends on the stability of
the targeted micronutrient trait under various envi-
ronmental conditions. Besides, the potential benefits
of biofortification depend on the groups of people
(men, women, children and elderly), amount of staple
food(s) consumed, the prevalence of existing micronu-
trient deficiencies, and special needs for processes
such as growth, pregnancy, and lactation (Hotz and
McClafferty, 2007). Presently we are looking many
successes of transgenic biofortification, e.g. lysine
and tryptophan rich quality protein maize, vitamin
A (B-carotene) rich orange sweet potato and vitamin
A rich golden rice (Garg et al., 2018). However, the
success rate and acceptability of genetic engineering
technique (transgenic) appears to be much lower com-
pared to conventional breeding. Furthermore, glob-
ally introduction of GMO food crops is a subject of de-
bate and truly its consumption is very low. In breed-
ing programs, interrupting the negative relationship
between grain yield with Zn or Fe concentration is a
challenging task for enhanced micronutrient density
in cereal grains (Zhao and McGrath, 2009; Bouis and
Welch, 2010; Waters and Sankaran, 2011). Research
to develop a variety combining the qualities of high
yield with high micronutrient concentration in grains
would take fairly a long time. Processing of food
grain is also important in the context of biofortifica-
tion strategy. Minerals such as iron, zinc, and copper
that are highest in the rice bran are lost during milling
and polishing. This is not a problem for Se and S since
they exist as maximum in the embryo (Gregorio et al.,
2000). However, the extent of the loss is genotype
dependent (Waters and Sankaran, 2011).
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4 Sustainable strategies for micronutri-
ent enrichment

When a soil is critically deficient in micronutri-
ents, the benefits of biofortified varieties cannot be
achieved. Thus, biofortification should be considered
as an integrated approach in which both breeding
and agronomic approaches are equally important for
question of sustainability (Mubarak et al., 2015). In
cultivation of micronutrient biofortified varieties, ap-
plication of micronutrient fertilizers can be regarded
as a sustainable strategy to boost the crop yield with
higher mineral concentrations in edible parts (Bouis
et al., 2003; Genc et al., 2005; White and Broadley,
2005; Graham et al., 2007; Pfeiffer and McClafferty,
2007). Concurrently, it is also needed to enhance the
concentrations of ‘promoter’ substances such as ascor-
bate (vitamin C) which stimulates the absorption of
mineral elements by the gut, and to lower the con-
centrations of ‘antinutrients’, such as phytate, which
interferes with their absorption (White and Broadley,
2009). Agronomic biofortification is complementary
to breeding approach. When the genotypes having
higher grain minerals are developed, their cultivation
should be properly fertilized with Fe and Zn (Prasad
et al., 2014). Thus, neither breeding nor agronomic
approach alone can solve the problem of micronutri-
ent malnutrition adequately and sustainably. For an
effective and sustainable strategy, agronomic biofor-
tification needs to be complemented with breeding
strategy for micronutrient enrichment of food crops.

5 Conclusions

A good progress has been made in research concern-
ing mineral biofortification of food crops with a view
to addressing micronutrient malnutrition in humans.
The main tune of this effort is breeding strategy with
transgenic approach supported by the HarvestPlus
programme. Still there is a big challenge to clearly
explain the molecular mechanisms and genetic be-
haviour of crops regarding Zn and Fe accumulation
in grains. Development of farmers’ acceptable va-
rieties with high yield potential and high micronu-
trient characteristics still remains a great challenge.
When a soil is highly deficient in Zn or Fe, the yield as
well as nutrient concentration of the biofortified crops
grown in that soil would not be satisfactory. Thus, in-
tegration of agronomic (fertilizer management) with
breeding approach is required to achieve the goal of
reducing micronutrient malnutrition.
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